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The mixed-mode, elasto-dynamic state of stresses in the neighborhood of a

rapidly running crack tip has been used to develop a relation between the

isochromatic fringe orde 'y and its position parameters4 and 0.) The maximum

shear stress is expressed in terms of the stress Intensity factors KI, ox

and other higher order terms involving the mixed-mode loading for a crack

propagating at constant velocity. A graphics package based on these derivation

was developed for mapping the isochromatics in the vicinity of a running crack

tip and was used to illustrate typical mixed-mode isochromatics. The

unsymmetry associated with higher order terms of mixed-mode stress field with

the mode I singular stress field and with/without the mode II singular stress

field also is investigated. Error estimates due to the assumed presence of KII

in a K1 stress field was found to be significant when the distance from the

crack tip Is more than 4mm.

* University of Washington, Department of Mechanical Engineering, Seattle,
Washington 98195

*t University of Maryland, Department of Mechanical Engineering, College Park,
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INTRODUCIONt

While much has been discussed theoretically and experimentally on

mixed-mode crack propagation [1-4), all discussions involved only quasi-static

mixed-mode crack propagation. As for rapidly propagating cracks# there exists

ample experimental evidence which shows that dynamic effects significantly

affect the crack tip stress fields [5-10]. Dynamic analysis of a rapidly

propagating crack is also required for interpreting the observed crack curving

and crack bifurcations in brittle materials. The directional stability of a

rapidly running crack has been shown to be influenced by crack velocity and the

non-singular stress, Gox' which is the second order term in the crack-tip

stress field. This stability problem was discussed theoretically and verified

experimentally with dynamic photoelastic results by the authors [11,12) and

Rossmanith [13). These photoelastic results are based on data measurements in

the vicinity of the crack tip and can introduce errors In estimated values of

fracture parameters due to crack tip blunting, insufficient fringe resolution

and inaccurate determination of crack tip location. On the other hand, other

far field errors may be introduced when data away from this crack tip zone

together with higher order terms in the crack tip stress field is used to

characterize the near crack tip stress field.

Two and three parameter characterization of static and dynamic stress

fields under pure mode I loading condition has been studied exhaustively by

Rossmanith and Irwin [7]. The effects of the first higher order term, Goxf

which is the lowest order non-singular term and represents the stress

biaxiality at the crack tip, were studied by Kobayashi and Ramulu [9-12) for

static and dynamic mixed-mode conditions. In a recent investigation#

Rossmanith [14) observed that the unsymmetry of isochromatics can be generated

by superimposing higher order terms of mode II stresses on mode I stress field
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away from the crack tip. Our dynamic photoelastic analyses of crack curving

and crack branching experimonts however, showed that the unsymmetry of

isochromatics at a distance as close as I to 3m from the crack tip was always

associated with dynamic K N and hence with directionally unstable cracks.

Because the relative magnitude of such dynamic KII is small with respect to the

dominating dynamic KZ values for many crack propagation problems and its

influence on the far field isochromatics is usually small. On the other hand,

unsymetry In the far field isochromatics may not require the presence of

dynamic K1 1, as reported by Rossmanith [143 and thus, error estimates in the

fracture parameters due to the assumed presence of KT Iin a K1 stress field is

needed. A numerical experimentation based on the theoretical dynamic

isochromatic field could provide not only the errors involved in wrongful

presence of dynamic N1, but also could provide information the minimum number

of higher order terms needed In the crack tip stress field and region of

influence of the near crack tip field under dynamic conditions for accurate

assessment of the dynamic crack tip stress field.

The objective of the present investigation is to study the effects of

higher order terms on the mixed-mode crack tip stress pattern of a rapidly

running crack with an attempt to rationally delineate the optimum region of

data collection. The effects of higher crack velocity on the crack tip stress

pattern which has not been reported previously under mixed-mode loading also

are presented.

THEORY

The general near crack tip dynamic state of stresses under mixed-mode

conditions was given recently by Nishioka and Atluri [153 In terms of the local

rectangular (xy) and polar (re) coordinates. The three rectangular stress

components under mode I and mode II conditions are given as
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r and 6 are the polar coordinates with origin at the moving crack tip and C,

C1 , and C2 are the crack velocity, dilatatonal and distortlonal wave

velocities, respectively.

The general solution expressed in Equation (1) yields the singular stresses

when n = 1; i.e.* A 1 = K, and A,,, = K11 , which are stress intensity factors

of mode I and mode II, respectively, The constant stress. a is related to

the higher order terms (HOT) for n Z 2 as
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(
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OX =. 
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The n = 2 term exists only In Oxx, stress component of mode I loading and is

zero in all other r-iponomts of -mode I -nLf -de I stress fiele. The

influence of these and third order terms, n = 3, on the. shape of the

isochromatics surrounding the crack tip, are studied.

The analyses of mixed-mode isochromatics Is made by computing the maximum

shear stress contours around the crack tip, The maximuw, tn-plane shear

stress, T--,, Is related to the cartesian stress components as

(2')2 = ( a - ax)2 + 2 Tx2 (3)yy xx xy

The analytical expression for mixed-mode isochromatics ir, the vicinity of the
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crack tip is obtained by combining the maximum shear stress, T m and the stress

optic law. I

N fm (4)

tin = 2hi

where N is the fringe order, f 0 is the stress-optical constant, and h is the

specimen thickness. The combination of Equations (1-4) yields a highly complex

relation which can be written in a functional form as

N = F(f0,h, r, KI, KiI,aox, C, C1 , C2 , e, HOT) (5)

The isochromatic field near the crack tip for given fracture parameters of

KI, KII, Cox, and the model parameters of f and h as well as the crack

velocity, C, may be generated by conputing N at a large number of special

points. Equation (5) is programmed to plot the dynamic Isochromatlcs where the

computer routine involved is similar to that discussed in References [33 and

[93. The T values were computed for an array of points within a region of _+in

25mm with the crack tip In the center.

NAR CRACK TIP ISOCHROMATICS

As an accuracy check of Equation (5), the dynamic isochromatics should

coincide with that 6f References [3) and [9) for the limiting case of crack

velocity C -> 0 as well as C = 0.15C1 , respectively, for identical values of

KI, KII, and aox. These fracture parameters KI, KII, aox and the other higher

order terms through the third order were varied and crack tip isochromattc

fringes were constructed. The size, shape, and orientation of these fringe

patterns depend szrongly on the combination of parameters chosen [3,4,93. In

order to visualize the effects of the higher order terms, theoretical

Isochromatics were generated using the same model-fringe constant of fo/h =

1.73 MPa/fringe (250psi/fringe), KI = 0.876 MPa fS (800psi 4Th) and KII of
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Reference [33. A constant crack velocity of C 0 0.20C1; and O.3OC1 was chosen

to generate the dynamic Isochrumatics. In addition* C1 - 2,400m/s (94#300

in/s) and C2 0 1#160 M/s (45,800 In/s), KII/KI > 0 were assumed in the dynamic

analysis. Static isochromatics were generated by setting C a 0.01 C1 in

Equation (5) and these plots were in agreement with that of References [3J and

[4].

The static and dynamic isochromatics listed in Figures 1 through 8 can be

broadly classified as:

a) Mode I (AIn > 0 - O, AIZ nu 0)

b) Mode II (AIn -O, AjIn 0 o)

c) Mixed Mode (AII1/Ai1 = KaI/K I a 0.25 and An - AIN > 0 when n k_ 2)

The higher order terms AI2 J 0 accounts for the stress biaxiality under

mode I loading condition and is independent of the radial distance and the

angle. The A13 and A113 terms represents the influence of the near boundaries

on the isochromatics and its magnitude and sign depends on the loading

configuration E4. In the following discussion, some representative static and

dynamic isochromatics in the vicinity of the crack tip are shown In Figure 1-8

for mode I, II and mixed-mode loadings.

PURE MODE I (A1nj 0; AIn a 0 for n 4 2)

The analytically generated pure mode I crack tip stress patterns with the

effect of higher order terms of n Z 2,3. which corresponds to r0 and r1 / 2 0

respectively, for a crack velocity of C/C1 = 0.2. is shown in Figure 1. The

fringe pattern tilt forward for A12 <0 and backwards for A12 >0. The added

third order term of A13 <0 increases the maximum apogee distance rmax of the

isochromatic for A12 <0 and decreases rmax when A12 >0. The effect of A 3 tern

is noted as the distance from the crack tip increases and appears to be an

7



essential term in the evaluation of fracture parameters using far-field data.

Detailed discussion of mode I isochrcmatics can be found in Reference [7) and

[93.

PURE MODE II (AIn O; AIIn ).0 for n > 2)

Figure 2 shows the pure mode II static isochromatic stress field for

A1I 1 t 0 and A113 >0. The effect of AII 3 term is significant. When A,, 1 > 0

and A113 = 0, the isochrcmatics are symmetric with respect to x and y. When

AII 3 is added to the pure mode II singular stress field, only the x axis

symmetry is maintained.

Figure 3 shows the pure mode II singular crack tip stress patterns (n - 1)

with increasing crack velocity C/C1. As the crack velocity increases, the size

of the isochromatics ahead of the crack tip decreases. Although there is no

experimental evidence of a crack propagating rapidly under pure mode II

loading# this numerical experiment demonstrates that the crack velocity

significantly affects the isochromatic patterns.

MIXED MODE (AIn > Os AIIn 1 0)

Superposition of a slight shearing stress component with and without the

singular stress component destroys the symmetry of the mode I isochromatic

pattern [143. The mixed-mode cases are classified into three groupst

a) Mixed-mode with dominant mode I and higher order terms.

b) Mixed-mode with dominant mode II and higher order terms.

c) Unsymmetric isochromatics associated with higher orders of mode II

terms in (a) and with higher orders of mode I terms in (b).

In the following, some representative static and dynamic isochromatics are

presented.



Made I Domnant Ladfng

Figure 4 shows the pure mixed-mode static and dynamic singular stress

patterns for Kjj/K1 a 0.25. The fringe patterns shown are symmetric and the

axis of symmetry rotated clockwise about 25 degrees for Kii/K, - 0.25, as

observed by Rosmanith [4]. For KjI/K1 - 0.25 the axis of symmetry rotates

counterclockwise about 25 degrees. Furthermore, the isochromatic fringe

pattern distorts at higher crack velocities by shortening and stretching of the

upper loops and lower loops, respectively. For C/C1 - 0.30. the upper fringe

loops tilt counterclockwise while the lower fringe loops do not rotate any

further.

Figure 5 shows the mixed-mode crack tip stress pattern with a dominant mode

I stress field. The isochromatics Increase in size for the positive higher

order terms of A12 * AI3 , and for crack velocities of 0.2C1 and 0.3C1 . The

upper loop again tilts counterclockwise and flattens as the magnitude of C/C1

increases to 0.3, as shown in Figure Sa. Similar effects were noted for the

experimentally observed crack velocities of C/C1 - 0.2, with the addition of

the negative higher order terms of A12 and A 3 . Addition of the third higher

order term, A 3 , regardless of the sign of the A12 in the stress field,

increased the fringe size. Velocity effect is significant at C/C1 - 0.30 for

added terms of A12 > 0-

The influence of A13 and AII 3 terms, which represent the boundary influence

on the isochromatics, Is shown in Figure Sb under mixed-mode loading, with A12

a 0. For the equal magnitudes of A 3 and AJI3, the fringe loop size increased

significantly and exhibited severe unsymmetric stress patterns away from the

crack tip. However in the near vicinity of the crack tip, the fringe pattern

shape and orientation is quite similar to the fringe patterns of Figure 4.
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This demonstrates the fact higher order terms must be included in the stress

field characterization when far-field fracture data are used.

1ode II Dominant Loading

The crack velocity not only affects the mixed-mode isochromatics for mode I

dominant loading but also for mode II dominant loading. Figure 6 shows the

theoretically generated isochrmatics with increasing mode II loading

representing mode II dominant isochromatics. Under KZI loading, the fringe

loops do not terminate at the crack tip and the fringe patterns become

increasingly dissimilar. Increases in mode II loading rotates the fringe

pattern counterclockwise with changes in shape and size.

Details of the changes in the shapes of the static mixed-mode isochromatics

are discussed in Reference [4] and# thus# will not be reproduced here. In

essence, the corresponding dynamic isochromatics are found to be larger and

essentially follow the general shape of the static isochromatics. Similar

results are shown in Figures 1 through 9 for the experimentally observed crack

C/Cl a 0.2.

Usymmtrki Isochrmattcs

Usymmetric isochromatic patterns can be generated by adding AII3 > O with

and without A13 > 0. However significant change in isochromatic patterns are

noted when the sign of the remote-stress component ox, i.e. A12 P is changed.

As shown in Figure 5 the fringe loops in the angular range of 0 to 1800

decrease in size for a positive aox and mode II stress intensity factor. The

higher order terms (n3) appear to have a negligible effect on the

Isochromatics in the vicinity of the crack tip. The loss of symmetry and the

distortion of the isochromatics, however, become more pronounced when higher
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order terms without singular term mixed-mode loading (Air 4 0; KII = 0, AIm n

0) are added. The fringe loops ahead of crack tip also do not terminate at the

crack tip.

Figure 7 shows the effect of the higher order terms of mode II

isochromatics with the mode I stress field. When A113 > 0 is superposed onto

the mode I stress field with KI > 0 and KII - 0, the resulting isochromatic

stress pattern loses its x- and y-axis symmetries for all A12 .  Increase in

crack velocity distorts this isochromatic pattern. Similar changes also are

seen in the case of Figure 8, when the higher order terms of mode I stress

field with KI = 0, A12 <0, and A13 = AI 3 Z 0 are superposed onto pure mode II

singular stress field.

Slight unsymmetry in load are often observed experimentally and are modeled

with K11 = 0, A <13  0 in the presence of cox. Such loading is superposed onto

the mode I crack shown in Figure 9a. A genuine mixed-mode crack tip

isochromatics is modeled with KII/KI a 0.10 and is also shown in Figure 9b.

Both isochromatics exhibit slight unsymmetry and their shapes, sizes, and

orientation are Influenced not only by the crack velocity# C/C1 , but also by

the ratio of mixed-mode stress intensity factors.

DISCUSSIONS~

Figures 1, 3, 5, and 6 show that the crack velocity affects the

isochromatics associated with mode I, II, and mixed-mode loading, and also in

mode II dominant loading. Increasing crack speed tends to reduce the

directional stability, which is generated by compressive stress parallel to the

crack, irrespective of the modes of deformation as noted in the recently

proposed crack curving criteria [11J. The added higher order terms change the

shape and size, which are governed by the sign of these tems, of the transient

11



isochromatics. Although mode II stress intensity factor is zero, i.e., K11 =

0, in Figure 9a, the presence of other higher order terms of the opening and

shearing mode stress field generated unsymmetric isochromatics. Figure 9b

shows only a slight unsymmetry observed In the presence of a smaller amount of

KII/KI . Such unsymmetric isochromatics are typically associated with curved

crack and post branching cracks.

In order to demonstrate the errors involved by assuming a mixed-mode crack

tip stress field (K,, K11, and Gox ) , the grossly unsymmetric isochromatics of

Figure 9a is chosen for a numerical experiment. This numerical experiment will

provide assessments of the effective region of the crack-tip stress field and

of the terms needed for obtaining accurate fracture parameters. By applying

the overdeterministic procedure [9,16J, the fracture parameters with added

higher order terms were evaluated using the fringe orders 3, 4, and 5 in

Figure 9a. A total of 20 data points which were located in the vicinity of the

maximum radial distance from the crack tip in each fringe order were used.

Data points were taken over the range 2m < rmax < 8.5nm, at several values of

r. Table 1 shows the two-parameter (KI, aox), three-parameter (KI, KII, Gox),

and five-parameter (Ain' AI n for n = l2,3), which were determined by this

numerical experiment and the exact values associated with the theoretical

lsochromatlcs. These results show that the fracture parameters generated by

this far-field data result in an apparent KII in addition to KI. This finding

is in agreement with the results of Rossmanith [14], where KII diminishes as

the data points closer to the crack tip are used in data reduction. The

estimated fracture parameters, which were obtained by using five-parameter,

also overestimated the stress intensity factor. Again, this error decreased

when the nearest fringe was used. These unsymmetric patterns in the absence of

KII are found to be present only when r is greater than about 4mm.
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In the presence of a small mode II stress Intensity factor, the

analytically generated isochromatics exhibits unsymmetry at a radial distance

as small as r - 1mm and Is always associated with a kinked crack. Table 1 also

shows that the five parameter method appears less desirable with added

difficulty in numerical convergency. Also# the constant crack speed assumption

is reasonable only if the measurement region is restricted to a moderate size

as specified in Reference [173. Finally, this numerical experimentation

confirms the general validity of the three-parameter method.

Typical mixed-mode experimental and theoretical isochromatics are shown in

Figures 10 through 12. The data points for generating the theoretical

isochromatics were taken over a region of radius 1 to 4mm, centered at the

crack tip. The theoretically generated isochromatics, with and without higher

orders, matched the experimental fringe patterns within the sampled region

around the crack tip.

Figure 10 shows one enlarged frame out of a 16-frame dynamic photoelastic

record of a curved crack in a 9.5mm thick* 254 x 254mm Homalite-100

single-edge-notch (SEN) specimen loaded under fixed-gripped tension [11). K1 ,

KII, and 3ox were estimated by the three-parameter method and is used to

reconstruct the experimental isochromatics. The mixed-mode effect is visible

for a radial distance as small as 1mm and the theoretical and experimental

isochromatics agree reasonably well within the region of about 4mm. The

Isochromatics associated with the continuously curving post-branched crack in a

wedge-loaded rectangular double cantelever beam (WL-RDCB) specimen [12J is

shown in Figure 11. The noticeable unsymmetry is not due only to the higher

order terms of mode II loading, but to the genuinely mixed-mode crack tip

deformation of KII/K1 - -0.17. The analytically generated isochromatics

matched well with the experimental isochromatics within the sampled region.
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Figure 12 shows the arrested branch crack with a dominant mode II crack tip

deformation during unloading process in a 3.2mm thick, 127 x 225mm

polycarbonate single-edge notch specimen [18]. The theoretical and

experimental isochromatics matched better within a crack tip zone of 4amm when

the three parameter method, without the higher order terms, was used for data

reduction. Thus, fracture parameters associated with directionally stable and

unstable cracks can be determined with reasonable accuracy by the three

parameter method as long as the data points are within a circular region of

radius 4mm from the crack tip.

Finally, the possible errors in crack curving angles which were generated

by using the mixed-mode three parameter (KI, KII, (ox) characterization of

unsymmetric isochromatics of K, field, were estimated by using the fracture

parameters generated by the nearest fringe order data in Table 1. The

estimated fracture parameters with the nearest or highest fringe order from

Table 1 yield an apparent mixed-mode stress intensity factor ratio of KII/K1 =

-0.026. By assuming a critical radius of rc = 1.3mm [11#12], the parameter
IoG

K1 KT' which controls the direction of crack propagation# becomes -0.0569.

This data is used to predict the crack curving angles by using the maximum

circumferential stress theory.

Figure 13 shows the influence of KII/K I on the analytically predicted crackGox

kinking angles for rCo x = -0.05690, 0.0, and 0.0569. A mixed-mode stress

intensity factor ratio of Kox/K1 = -0.0155 or -0.036 with a positive or

negative rr.L- ±0.0569, respectively, is required to generate a measurable
KKI a

crack curving angle of 3 degrees. Thus, in the presence of a negative ox

the magnitude of KII/K I must double that required for a positive c Ox in

order to generate a visible crack curving. On the other hand, a hypothetical

Kii - -0.026 Ki with igc ox.= -0.0569 will result in a crack kinking angle of
KT
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1.8 degreest which is negligible. By changing# .j 5  0.0569# the kinking

angle increases to 4.2 degrees, which is noticeable. Such positiver c Kx

however# is only remotely possible. The predicted crack curving angle from

the evaluated fracture data of the unsymmetric isochrmatics is at the most 1.8

degrees and is barely noticeable. Possible errors which are generated by using

three parameter method (K1 , KII, (o ) in evaluating the unsymmetric

isochromatics without a singular mode II is negligible if the photoelastic data

is confined to a circular region of radius 4mm from the crack tip.

The above results address the question of tho needed terms in the dynamic

mixed-mode crack tip stress field, and also indicate the limitation in crack

tip zone size for accurate estimation of stress intensity factors. In order to

define the conditions under which the higher order terms need to be included in

the dynamic stress field remains a topic worthy of detailed investigation.

CONCLUSIONS

1. The higher order terms significantly affect the size and shapes of

dynamic crack-tip isochromatics generated by pure mode I, mode II, and under

mixed-mode loadings. In particulart the first higher order term or remote

stress component changes the crack tip stress pattern shape and size in all

modes of loading.

2. The higher order terms of n - 3, i.e., A13 , A113, significantly affect

the isochromatics and must be used in analyzing the pure mode II fracture.

3. Crack velocity of C/C1 > 0.2, alter significantly the size and shape of

the crack tip stress pattern in all modes of loading.

4. The higher order terms (n > 3) have little Influence on the

elastodynamic mixed-mode isochrmatics for a radial distance less than 4mm.

5. The isochromatics can become unsymmetric In the presence of higher order
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terms in mode II stress field without the presence of the singular tern

involving KIN .

6. By using the three parameter model one can estimate reasonably accurate

fracture parameters associated with directionally stable and unstable cracks

within the maximum radial distance of 1 to 4mm.
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TABLE 1

Evaluation of Fracture Parameters
Associated with the Fringe Pattens Shown in Figure 12a

ESTIMATION

EXACT IWO PARAMETER THREE PARAMETER FIVE PARAMETER
VALUES

FRINGE ORDER 3 4 5 3 4 5 3 4 5

K1  0.876 0.810 0.820 0.820 1.049 0.954 0.873 0.986 1.041 0.892

(MPa4nm

A12  -0.58 -1.20 -0.78 -0.72 -0.73 -0.50 -0.59 -0.83 -0.37 -0.62

(MPa)

A13  0 -0.69 -0.17 -0.35

(MPa/4W)

K11  0 -0.043 -0.023 -0.019 0.077 -0.043 -0.022

(MPa4I')

A113  -0.28 -- -- -- 0.35 0.30 -0.35

(MPa/,1I)
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